Вся библиотека >>>

Содержание книги >>>

 

Книги по строительству и ремонту

Водоснабжение


Быт. Хозяйство. Строительство. Техника

 

Раздел 7. ВОДОСНАБЖЕНИЕ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

 

 

§ 149. Водохранилища-охладители

 

По назначению, расположению и условиям питания водохранилища-охладители разделяются на следующие группы:

регулирующие водохранилища на водотоках, используемые не только для охлаждения циркуляционной воды, но и для сезонного или многолетнего регулирования стока;

водохранилища-охладители на водотоках без регулирования стока, сооружаемые лишь для создания поверхности, достаточной для охлаждения циркуляционной воды;

водохранилища-охладители на естественных озерах и прудах;

наливные водохранилища, сооружаемые вне водотока, с подпиткой из ближайших рек.

Схемы циркуляции воды в водохранилищах-охладителях. Свободная поверхность водохранилища-охладителя не вся одинаково эффективно участвует в отдаче тепла, поступающего с нагретой циркуляционной водой. Количество тепла, отводимого с единицы площади того или иного участка поверхности водохранилища, зависит от температуры воды на этом участке. Поэтому при термическом расчете водохранилища-охладителя необходимо представить картину распределения температур по его поверхности; следовательно, необходимо составить схему распределения потока теплой воды от точки ее сброса до места ее приема.

Схема циркуляции в водохранилище-охладителе определяется его формой, взаимным расположением водосбросных и водоприемных сооружений, а также струераспределительными и струенаправляющими сооружениями.

При проектировании для современных мощных электростанций крупных водохранилищ-охладителей с глубинами, достигающими десятков метров, и с объемами воды в сотни миллионов кубических метров следует учитывать, что хроме градиентных течений, вызываемых сбросом циркуляционного расхода и поступлением речной воды, в водохранилищах имеют место также ветровые, плотностные и компенсационные течения.   

Ветровые течения приводят к сгону воды от подветренной стороны водоема и к нагону ее у наветренной стороны. Возникающий при этом горизонтальный градиент давления, направленный в сторону, противоположную ветру, вызывает один из видов глубинных компенсационных течений.

Известно, что вода имеет максимальную плотность при температуре 4° С, а при нагревании ее плотность уменьшается. Передача тепла в водную толщу за счет молекулярной диффузии и теплопроводности весьма слаба. Поэтому при прогреве верхних слоев воды возникает температурная стратификация: температура воды на поверхности оказывается выше, чем в глубинных слоях, и эта разница достигает иногда 10° С и более. При выпуске теплой воды на поверхность водохранилища может возникнуть устойчивая разница температур воды в верхних ч нижних слоях и произойти расслоение потоков, имеющих различною плотность. В этом случае возникают верхнее теплое и глубинное холодное течения, которые могут быть разнонаправленными. Такие течения называются плотностными.

При сбросе нагретой воды в водохранилище у сбросных сооружений часто наблюдается понижение температуры воды на,несколько градусов. Это объясняется тем, что нагретая вода, если она выходит в водохранилище со значительными скоростями, эжектирует массы холодной воды из придонных слоев и вовлекает их в циркуляционный поток. Этот смешанный поток, имея меньшую плотность, чем придонные слои, выходит на поверхность, а по направлению к сбросным сооружениям возникает глубинный ток холодной воды, являющийся вторым видом компенсационных течений.

Вследствие отсутствия методов, позволяющих установить расчетным путем действительную сложную картину распределения течений и температур воды по поверхности и глубине водохранилища-охладителя, при решении практических инженерных задач приходится принимать весьма упрощенную схему течений.

Приближенный метод построения плана течений в водохранилище-охладителе был впервые предложен в 1933 г. инж. Н. М. Вернадским. Пользуясь этим методом, разработанным на базе теории турбулентного потока, можно с учетом сил трения по дну и сил касательных напряжений между соседними струями построить план транзитного потока (от места сброса воды до водоприемных сооружений), водоворотов, вызванных транзитным потоком, и застойных зон.

Считается, что с поверхности водоворотов теплоотдача происходит с меньшей интенсивностью, чем с поверхности транзитного потока. Площадь действительной поверхности водохранилища заменяется, согласно предложению Н. М. Вернадского, «площадью активной зоны», которая учитывает теплоотдачу транзитного потока и смежных с ним водоворотов. Отношение площади активной зоны к площади действительной поверхности водохранилища называется коэффициентом использования площади водохранилища: /С=о)акт/о)в. Этот коэффициент в зависимости от формы водохранилища, схемы расположения водосбросных и водоприемных сооружений и условий растекания циркуляционного потока может иметь значения от 0,5 до 0,95.

Более надежные данные для проектирования, в частности значения коэффициента использования площади водохранилища-охладителя, могут быть получены по результатам гидротермического моделирования на крупномасштабной модели водохранилища, которое проводится по методике, разработанной ВНИИГ им. Б. Е. Веденеева в 1971 г.

Чтобы распределить транзитный поток циркуляционной воды по возможно большей части поверхности водохранилища и создать площадь активной зоны, достаточную для охлаждения расчетного расхода, нагретую на промышленном предприятии воду сбрасывают на значительном расстоянии от водоприемных сооружений, а также применяют струенаправляющие и струераспределительные сооружения.

Исследованиями последних лет установлено, что в больших и глубоких водохранилищах-охладителях, которые сооружаются, например, для современных мощных теплоэлектростанций, возможно создание объемной циркуляции воды. Для этого необходимо организовать прием воды только из глубинных слоев водохранилища, а нагретую воду сбрасывать на поверхность водохранилища с малыми скоростями. Тогда можно располагать сбросные сооружения вблизи водоприемных и даже совмещать их в одном сооружении. При этом нагретая вода, имеющая меньшую плотность, чем холодная, растекается по поверхности водохранилища и, охлаждаясь, переходит в глубинные слои, которые движутся к водоприемным сооружениям. Такая схема циркуляции

позволяет отказаться от длинных отводящих каналов    и    струенаправляющих сооружений при высоком коэффициенте использования площади водохранилища.

Некоторые примеры организации водохранилищ-охладителей к схем расположения сооружений, предназначенных для обеспечения наиболее полного использования их поверхности для охлаждения воды, приведены на VI 1.5. Здесь представлены:

водохранилище вытянутой формы на водотоке (VII.5, а); циркуляция обеспечивается отводящим каналом и струенаправляющей дамбой перед водоприемными сооружениями;

водохранилище сложной формы на водотоке (VII.5, б); циркуляция обеспечивается перегораживающей дамбой и искусственной прорезью;

широкое водохранилище на водотоке (VII.5, б); циркуляция обеспечивается струенаправляющей дамбой;

использование системы естественных озер для охлаждения воды (VII.5, г);

наливное водохранилище, для сооружения которого удачно использован рельеф местности (VII.5, д);

наливное водохранилище с круговой циркуляцией воды и водоприемным сооружением в центре (VII.5, е);

глубокое водохранилище на малом водотоке с выпуском нагретой воды на поверхность и глубинным водоприемным сооружением, расположенным вблизи выпуска (VI 1.5,ж); циркуляция воды — объемная с разнонаправленными поверхностным и глубинным потоками.

Тепловой расчет водохранилища-охладителя. Тепловой расчет водохранилища-охладителя производится для определения температуры охлажденной воды у места ее приема при заданной площади активной зоны или для определения необходимой площади активной зоны водохранилища при заданных тепловой и гидравлической нагрузках.

Для облегчения практических расчетов можно пользоваться номограммой на VII.6, для чего следует подсчитать удельную площадь активной зоны юуд, приходящуюся на единицу расхода охлаждаемой воды, в м2/м3 в сутки. По номограмме определяется перегрев охлажденной в водохранилище циркуляционной воды, поступающей к месту ее приема, по сравнению с естественной температурой воды {U—te) в зависимости от величины нагрева воды на электростанции (перепада температур Д^=^1—^г)-

Для ориентировочных расчетов можно принимать необходимую площадь водохранилища-охладителя от 30 до 50 м2 для охлаждения 1 м3/ч воды на 8—10°.

Основные сооружения водохранилищ-охладителей. Проектирование плотин, дамб, водосбросов и каналов для водохранилищ-охладителей производят по соответствующим нормам проектирования гидротехнических сооружений.

Место расположения водосбросных и водоприемных сооружений, а также сооружений, увеличивающих активную зону водохранилища (струераспределительных и струенаправляющих сооружений), выбирают исходя из условий получения необходимой площади активной зоны на основе технико-экономических расчетов.

Струенаправляющие и струераспределительные сооружения выполняют в виде водосливов, лотков, труб, консольных водосбросов. Струераспределительные сооружения наиболее целесообразно выполнять в виде затопленных водосливов распластанного профиля либо в виде фильтрующих дамб из каменной наброски. Такие сооружения обеспечивают выпуск теплой воды на поверхность водохранилища с малыми скоростями, что предотвращает появление глубинного течения к водосбросу. 

Наиболее рациональным типом сооружения для забора воды из водохранилища-охладителя глубиной не менее 4—5 м является глубинный водозабор, обеспечивающий получение воды из придонных слоев. Этим достигается наиболее низкая температура охлаждающей воды, предотвращение или резкое уменьшение захвата биологических загрязнений (микроорганизмов, низшей водной растительности, личинок моллюсков) и наиболее рациональная продувка водохранилища. При глубинном водозаборе резко уменьшается захват рыбы и, что особенно важно, мальков, которые обитают обычно на небольших глубинах. Глубинный водозабор обеспечивает также бесперебойную подачу воды к потребителям при шуговых явлениях без принятия мер по обогреву водозабора.

Во избежание подсасывания воды из верхних слоев входные окна глубинного водозабора должны быть расположены на достаточной глубине, а входные скорости воды должны быть минимальными. В зависимости от глубины расположения верхней кромки входного окна водозабора входные скорости принимаются от 0,1 до 0,3 м/с.

Глубинные водозаборы выполнялись ранее в виде забральных стенок, погруженных на определенную глубину и образующих входные отверстия между дном водохранилища и нижней кромкой стенки. В последние годы широкое применение получили водоприемные сооружения, выполненные в виде подводной галереи со щелью переменного сечения во фронтальной стенке и козырьком над щелью, конструкция которых разработана в институте Теплоэлектропроект (VII.7). Такое водоприемное сооружение не подвергается воздействию волновых и ледовых нагрузок и обеспечивает равномерное поступление воды по всему водоприемному фронту.

 

 «Водоснабжение»       Следующая страница >>>

 

Смотрите также:

 

Справочник домашнего мастера  Дом своими руками Строительство дома Гидроизоляция

 

"Бытовые печи, камины и водонагреватели"

 

ВОДОНАГРЕВАТЕЛИ И ВОДОГРЕЙНЫЕ УСТРОЙСТВА

 36. Конструкции водонагревателей заводского изготовления

37. Конструкции водогрейных устройств, применяемых в топливниках отопительных и отопительно-варочных печей

38. Водонагреватели для индивидуальных и малых сельских бань

39. Контактные водонагреватели для теплоснабжения и горячего водоснабжения бань